0040-4039/81/0215-0757\$02.00/0

3,5-DINITRO-1-(p-NITROPHENYL)-4-PYRIDONE AS A NOVEL PROTECTIVE GROUP OF PRIMARY AMINES

Eizo Matsumura, Masahiro Ariga*, Yasuo Tohda, and Toshihide Kawashima Department of Chemistry, Osaka Kyoiku University Tennoji-ku, Osaka 543, Japan

Summary: 3,5-Dinitro-1-(p-nitrophenyl)-4-pyridone is proposed as a novel protective group for primary amines, especially amino acids, based on the results of the transformation of 1-substituted 3,5-dinitro-4-pyridones with primary amines.

A novel ring transformation of 1-substituted 3,5-dinitro-4-pyridones with sodio β -keto esters has been reported.¹⁾ Now we wish to demonstrate the reactions of the 4-pyridones with various kinds of primary amines and their elegant utility for the amino protecting group.

Treatment of 3,5-dinitro-1-(p-nitrophenyl)-4-pyridone (DNPY- $C_{6}H_{4}NO_{2}$ -p) with l.lequimolar amounts of isopropylamine in pyridine at room temperature gave 3,5-dinitro-1-isopropyl-4-pyridone [DNPY-CH(CH₃)₂] and p-nitroaniline, in good yield.

A variety of primary amines (NH_2-R) were easily modified by $DNPY-C_6H_4NO_2-p$ to give 1-substituted 3,5-dinitro-4-pyridones (DNPY-R) quantitatively, liberating p-nitroaniline. The results are listed in Table 1.

Amino acids were also effective as the primary amine for this transformation, and gave corresponding DNPY-amino acids and p-nitroaniline.

Further, when the product, DNPY-Gly, was treated with aniline or propylamine in pyridine-water at room temperature, glycine was recovered in good yield together with either DNPY-C₆H₅ or DNPY-C₃H₇. Other amino acids could be recovered in theoretical yield from DNPY-amino acids under mild conditions as shown in Table 2. Racemization of the amino acids was not observed throughout the reactions.

DNPY-amino Acid
$$\xrightarrow{\text{NH}_2-\text{R}}$$
 Amino Acid + DNPY-R
R = C₆H₅, CH₃, C₃H₇

	I-Substituteu	S, J-DINIC	LO-4-Pyriuon	ies (DNI	-1-R)	
DNPY-R	Molecular formula	Mp	Yield		IR	NMR
R		°C	8,	ν _{C=0}	νNO ₂ cm ⁻¹ H ₂	& H ₆ ppm
-сн ₃	^С 6 ^Н 5 ^N 3 ^O 5	215-216	92.5	1680	1365, 1530	8.95
-C3H7	C ₈ H ₉ N ₃ O ₅	235-236	81.5	1680	1350, 1540	9.12
-CH (CH ₃) 2	C ₈ H ₉ N ₃ O ₅	205-206	quant.	1685	1320, 1520	9.14
-C (CH ₃) ₃	C ₉ H ₁₁ N ₃ O ₅	231-232	92.9	1700	1320, 1520	9.05
-C ₆ H ₁₃	C ₁₁ H ₁₅ N ₃ O ₅	122-123	81.4	1680	1335, 1525	9.13
- (Сн ₂) ₂ Он	C7H7N306	226-227	quant.	1680	1330, 1520	9.06
-cyclo-C6H11	C ₁₁ H ₁₃ N ₃ O ₅	226-227	quant.	1685	1340, 1520	9.09
-CH ₂ C ₆ H ₅	C ₁₂ H ₉ N ₃ O ₅	192-193	89.4	1675	1330, 1540	9.22
-с ₆ н ₅	C ₁₁ H ₇ N ₃ O ₅	295-296	91.1	1675	1360, 1520	9.23
-с ₆ н ₄ -сн ₃ -р	C ₁₂ H ₉ N ₃ O ₅	190-191	90.9	1680	1320, 1530	9.18
-C6H4-CH3-0	C ₁₂ H ₉ N ₃ O ₅	195-196	91.4	1690	1315, 1515	9.11
-C ₆ H ₄ -C1-p	C ₁₁ H ₆ N ₃ O ₅ C1	226-227	quant.	1690	1320, 1520	9.27
-2-pyridyl	C ₁₀ H ₆ N ₄ O ₅	245-246	92.4	1675	1360, 1520	9.59
-3-pyridyl	C ₁₀ H ₆ N ₄ O ₅	278-279	quant.	1685	1320, 1525	9.34
-2-pyrimidyl	C ₉ H ₅ N ₅ O ₅	176-177	90.3	1680	1360, 1520	9.89
-Gly (-CH ₂ CO	OH) C ₇ H ₅ N ₃ O ₇	220 (dec.) quant.	1690	1340, 1520	9.12
-∟-Ala	C ₈ H ₇ N ₃ O ₇	195 (dec.) quant.	1690	1350, 1520	9.12
-∟-Glu	C ₁₀ H ₉ N ₃ O ₉	144 (dec.) quant.	1675	1340, 1520	9.02
-L-Tyr	$C_{14}H_{11}N_{3}O_{8}$	195 (dec.) quant.	1690	1350, 1520	9.03
-L-Ser	$C_8H_7N_5O_7$	196 (dec.) quant.	1685	1340, 1535	9.12
-L-His	C ₁₁ H ₉ N ₅ O ₇	255 (dec.) quant.	1690	1340, 1525	9.04
AspNH2	C9 ^H 8 ^N 4 ^O 8	134 (dec.) 72.0	1690	1350, 1525	9.19
Table 2	Recovery of Am	nino Acids	from DNPY-A	mino Ac	ids by Amines	
DNPY-R Ar	nine Amino Acid	Yield (%)	DNPY-R	Amine	Amino Acid	Yield (%
DNPY-Gly Ph	NH ₂ Gly	70.0	DNPY-L-Leu	MeNH.	, L-Leu	quant.

Table 1 1-Substituted 3,5-Dinitro-4-pyridones (DNPY-R)²)

The facts that the introduction and the removal of DNPY group were easily performed in mild conditions suggest 3,5-dinitro-1-(p-nitrophenyl)-4-pyridone to be useful for the protective group of the amino function of amino acid and others. These reactions also provide a convenient route for the preparation of 1-substituted 3,5-dinitro-4-pyridones. Further work is in progress.

quant.

quant.

DNPY-L-Glu PrNH2

DNPY-Gly-Gly PrNH2

∟-Glu

Gly-Gly

quant.

80.0

References and Notes

∟**-**Ala

∟-Ala

DNPY-L-Ala MeNH2

DNPY-L-Ala PrNH₂

E. Matsumura, M. Ariga, and Y. Tohda, <u>Bull. Chem. Soc. Jpn.</u>, <u>53</u>, 2891 (1980).
cf. E. Matsumura, M. Ariga, and Y. Tohda, <u>Tetrahedron Lett</u>., 1979, 1393.
All compounds gave satisfactory analytical, IR, and NMR (in DMSO-d₆, TMS as the internal standard) data.

(Received in Japan 31 October 1980)